[ad_1]
DebRoy, T., Mukherjee, T., Wei, H. L., Elmer, J. W. & Milewski, J. O. Metallurgy, mechanistic fashions and machine studying in metallic printing. Nat. Rev. Mater. 6, 48–68 (2021).
Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).
Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).
Pham, M.-S., Liu, C., Todd, I. & Lertthanasarn, J. Harm-tolerant architected supplies impressed by crystal microstructure. Nature 565, 305–311 (2019).
Kürnsteiner, P. et al. Excessive-strength Damascus metal by additive manufacturing. Nature 582, 515–519 (2020).
Wang, Y. M. et al. Additively manufactured hierarchical stainless steels with excessive power and ductility. Nat. Mater. 17, 63–71 (2018).
Cunningham, R. et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging. Science 363, 849–852 (2019).
Todaro, C. J. et al. Grain construction management throughout metallic 3D printing by high-intensity ultrasound. Nat. Commun. 11, 142 (2020).
Murray, S. P. et al. A defect-resistant Co–Ni superalloy for 3D printing. Nat. Commun. 11, 4975 (2020).
Barriobero-Vila, P. et al. Peritectic titanium alloys for 3D printing. Nat. Commun. 9, 3426 (2018).
Brif, Y., Thomas, M. & Todd, I. Using high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015).
Jensen, J. Ok. et al. Characterization of the microstructure of the compositionally complicated alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr. Mater. 121, 1–4 (2016).
George, E. P., Raabe, D. & Ritchie, R. O. Excessive-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
Lu, Y. et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
Zhu, Y. et al. Enabling stronger eutectic high-entropy alloys with bigger ductility by 3D printed directional lamellae. Addit. Manuf. 39, 101901 (2021).
Shi, P. et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373, 912–918 (2021).
Zhu, Y. T. & Liao, X. Retaining ductility. Nat. Mater. 3, 351–352 (2004).
Zheng, S. et al. Excessive-strength and thermally steady bulk nanolayered composites because of twin-induced interfaces. Nat. Commun. 4, 1696 (2013).
Cheng, Z., Zhou, H., Lu, Q., Gao, H. & Lu, L. Additional strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925 (2018).
Fan, L. et al. Ultrahigh power and ductility in newly developed supplies with coherent nanolamellar architectures. Nat. Commun. 11, 6240 (2020).
Thomas, M., Baxter, G. J. & Todd, I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater. 108, 26–35 (2016).
Pham, M.-S., Dovgyy, B., Hooper, P. A., Gourlay, C. M. & Piglione, A. The function of side-branching in microstructure growth in laser powder-bed fusion. Nat. Commun. 11, 749 (2020).
Bhattacharjee, T. et al. Simultaneous power–ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic excessive entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018).
Shi, P. et al. Enhanced power–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 10, 489 (2019).
Gao, X. et al. Microstructural origins of excessive power and excessive ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59–66 (2017).
Misra, A., Hirth, J. P. & Hoagland, R. G. Size-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005).
Porter, D. A. & Easterling, Ok. E. Section Transformations in Metals and Alloys (CRC, 1981).
An, Z. et al. Spinodal-modulated strong answer delivers a robust and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).
Chen, W. et al. Microscale residual stresses in additively manufactured stainless-steel. Nat. Commun. 10, 4338 (2019).
Naeem, M. et al. Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci. Adv. 6, eaax4002 (2020).
Raabe, D. et al. Metallic composites processed by way of excessive deformation: towards the boundaries of power in bulk supplies. MRS Bull. 35, 982–991 (2010).
Wang, Y., Ohnuki, T., Tomota, Y., Harjo, S. & Ohmura, T. Multi-scaled heterogeneous deformation conduct of pearlite metal studied by in situ neutron diffraction. Scr. Mater. 140, 45–49 (2017).
Ghosh, P., Kormout, Ok. S., Lienert, U., Keckes, J. & Pippan, R. Deformation traits of ultrafine grained and nanocrystalline iron and pearlitic metal—an in situ synchrotron investigation. Acta Mater. 160, 22–33 (2018).
Bhadeshia, H. Cementite. Int. Mater. Rev. 65, 1–27 (2020).
Jia, D., Ramesh, Ok. T. & Ma, E. Results of nanocrystalline and ultrafine grain sizes on constitutive conduct and shear bands in iron. Acta Mater. 51, 3495–3509 (2003).
Wei, Q., Jiao, T., Ramesh, Ok. T. & Ma, E. Nano-structured vanadium: processing and mechanical properties beneath quasi-static and dynamic compression. Scr. Mater. 50, 359–364 (2004).
Hull, D. & Bacon, D. J. Introduction to Dislocations (Butterworth-Heinemann, 2001).
Wang, F. et al. Multiplicity of dislocation pathways in a refractory multiprincipal factor alloy. Science 370, 95–101 (2020).
Lee, C. et al. Temperature dependence of elastic and plastic deformation conduct of a refractory high-entropy alloy. Sci. Adv. 6, eaaz4748 (2020).
Chen, M. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003).
Rao, S. I. et al. Atomistic simulations of dislocations in a mannequin bcc multicomponent concentrated strong answer alloy. Acta Mater. 125, 311–320 (2017).
Lei, Z. et al. Enhanced power and ductility in a high-entropy alloy by way of ordered oxygen complexes. Nature 563, 546–550 (2018).
Ding, Q. et al. Tuning factor distribution, construction and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).
George, E. P., Curtin, W. A. & Tasan, C. C. Excessive entropy alloys: a targeted evaluation of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020).
Zhu, Y. et al. Heterostructured supplies: superior properties from hetero-zone interplay. Mater. Res. Lett. 9, 1–31 (2021).
Cheng, Z. et al. Unraveling the origin of additional strengthening in gradient nanotwinned metals. Proc. Natl Acad. Sci. USA 119, e2116808119 (2022).
Dickson, J., Boutin, J. & Handfield, L. A comparability of two easy strategies for measuring cyclic inner and efficient stresses. Mater. Sci. Eng. 64, L7–L11 (1984).
Wu, Q. et al. Uncovering the eutectics design by machine studying within the Al–Co–Cr–Fe–Ni excessive entropy system. Acta Mater. 182, 278–286 (2020).
Zimmermann, M., Carrard, M. & Kurz, W. Speedy solidification of Al–Cu eutectic alloy by laser remelting. Acta Metall. 37, 3305–3313 (1989).
Sharma, G., Ramanujan, R. V. & Tiwari, G. P. Instability mechanisms in lamellar microstructures. Acta Mater. 48, 875–889 (2000).
An, Ok. et al. First in situ lattice strains measurements beneath load at VULCAN. Metall. Mater. Trans. A 42, 95–99 (2011).
An, Ok., Chen, Y. & Stoica, A. D. VULCAN: a “hammer” for high-temperature supplies analysis. MRS Bull. 44, 878–885 (2019).
An, Ok. VDRIVE: Knowledge Discount and Interactive Visualization Software program for Occasion Mode Neutron Diffraction ORNL Report No. ORNL-TM-2012-621 (Oak Ridge Nationwide Laboratory, 2012).
Larson, A. C. & Von Dreele, R. B. Normal Construction Evaluation System (GSAS) Report LAUR 86-748 (Los Alamos Nationwide Laboratory, 2004).
Courtney, T. H. Mechanical Conduct of Supplies (Waveland, 2005).
He, J. Y. et al. A precipitation-hardened high-entropy alloy with excellent tensile properties. Acta Mater. 102, 187–196 (2016).
Zhang, X., Hansen, N., Godfrey, A. & Huang, X. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar buildings in pearlitic metal wire. Acta Mater. 114, 176–183 (2016).
[ad_2]