Saturday, June 3, 2023
HomeNature NewsSturdy but ductile nanolamellar high-entropy alloys by additive manufacturing

Sturdy but ductile nanolamellar high-entropy alloys by additive manufacturing

[ad_1]

  • DebRoy, T., Mukherjee, T., Wei, H. L., Elmer, J. W. & Milewski, J. O. Metallurgy, mechanistic fashions and machine studying in metallic printing. Nat. Rev. Mater. 6, 48–68 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pham, M.-S., Liu, C., Todd, I. & Lertthanasarn, J. Harm-tolerant architected supplies impressed by crystal microstructure. Nature 565, 305–311 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kürnsteiner, P. et al. Excessive-strength Damascus metal by additive manufacturing. Nature 582, 515–519 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. M. et al. Additively manufactured hierarchical stainless steels with excessive power and ductility. Nat. Mater. 17, 63–71 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cunningham, R. et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging. Science 363, 849–852 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Todaro, C. J. et al. Grain construction management throughout metallic 3D printing by high-intensity ultrasound. Nat. Commun. 11, 142 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Murray, S. P. et al. A defect-resistant Co–Ni superalloy for 3D printing. Nat. Commun. 11, 4975 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barriobero-Vila, P. et al. Peritectic titanium alloys for 3D printing. Nat. Commun. 9, 3426 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Brif, Y., Thomas, M. & Todd, I. Using high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Jensen, J. Ok. et al. Characterization of the microstructure of the compositionally complicated alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr. Mater. 121, 1–4 (2016).

    CAS 
    Article 

    Google Scholar
     

  • George, E. P., Raabe, D. & Ritchie, R. O. Excessive-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lu, Y. et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu, Y. et al. Enabling stronger eutectic high-entropy alloys with bigger ductility by 3D printed directional lamellae. Addit. Manuf. 39, 101901 (2021).

    CAS 

    Google Scholar
     

  • Shi, P. et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373, 912–918 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, Y. T. & Liao, X. Retaining ductility. Nat. Mater. 3, 351–352 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, S. et al. Excessive-strength and thermally steady bulk nanolayered composites because of twin-induced interfaces. Nat. Commun. 4, 1696 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Cheng, Z., Zhou, H., Lu, Q., Gao, H. & Lu, L. Additional strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Fan, L. et al. Ultrahigh power and ductility in newly developed supplies with coherent nanolamellar architectures. Nat. Commun. 11, 6240 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thomas, M., Baxter, G. J. & Todd, I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater. 108, 26–35 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pham, M.-S., Dovgyy, B., Hooper, P. A., Gourlay, C. M. & Piglione, A. The function of side-branching in microstructure growth in laser powder-bed fusion. Nat. Commun. 11, 749 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharjee, T. et al. Simultaneous power–ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic excessive entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi, P. et al. Enhanced power–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 10, 489 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, X. et al. Microstructural origins of excessive power and excessive ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59–66 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Misra, A., Hirth, J. P. & Hoagland, R. G. Size-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Porter, D. A. & Easterling, Ok. E. Section Transformations in Metals and Alloys (CRC, 1981).

  • An, Z. et al. Spinodal-modulated strong answer delivers a robust and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, W. et al. Microscale residual stresses in additively manufactured stainless-steel. Nat. Commun. 10, 4338 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Naeem, M. et al. Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci. Adv. 6, eaax4002 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Raabe, D. et al. Metallic composites processed by way of excessive deformation: towards the boundaries of power in bulk supplies. MRS Bull. 35, 982–991 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., Ohnuki, T., Tomota, Y., Harjo, S. & Ohmura, T. Multi-scaled heterogeneous deformation conduct of pearlite metal studied by in situ neutron diffraction. Scr. Mater. 140, 45–49 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ghosh, P., Kormout, Ok. S., Lienert, U., Keckes, J. & Pippan, R. Deformation traits of ultrafine grained and nanocrystalline iron and pearlitic metal—an in situ synchrotron investigation. Acta Mater. 160, 22–33 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bhadeshia, H. Cementite. Int. Mater. Rev. 65, 1–27 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jia, D., Ramesh, Ok. T. & Ma, E. Results of nanocrystalline and ultrafine grain sizes on constitutive conduct and shear bands in iron. Acta Mater. 51, 3495–3509 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wei, Q., Jiao, T., Ramesh, Ok. T. & Ma, E. Nano-structured vanadium: processing and mechanical properties beneath quasi-static and dynamic compression. Scr. Mater. 50, 359–364 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Hull, D. & Bacon, D. J. Introduction to Dislocations (Butterworth-Heinemann, 2001).

  • Wang, F. et al. Multiplicity of dislocation pathways in a refractory multiprincipal factor alloy. Science 370, 95–101 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, C. et al. Temperature dependence of elastic and plastic deformation conduct of a refractory high-entropy alloy. Sci. Adv. 6, eaaz4748 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, M. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rao, S. I. et al. Atomistic simulations of dislocations in a mannequin bcc multicomponent concentrated strong answer alloy. Acta Mater. 125, 311–320 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lei, Z. et al. Enhanced power and ductility in a high-entropy alloy by way of ordered oxygen complexes. Nature 563, 546–550 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding, Q. et al. Tuning factor distribution, construction and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • George, E. P., Curtin, W. A. & Tasan, C. C. Excessive entropy alloys: a targeted evaluation of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhu, Y. et al. Heterostructured supplies: superior properties from hetero-zone interplay. Mater. Res. Lett. 9, 1–31 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Z. et al. Unraveling the origin of additional strengthening in gradient nanotwinned metals. Proc. Natl Acad. Sci. USA 119, e2116808119 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dickson, J., Boutin, J. & Handfield, L. A comparability of two easy strategies for measuring cyclic inner and efficient stresses. Mater. Sci. Eng. 64, L7–L11 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Wu, Q. et al. Uncovering the eutectics design by machine studying within the Al–Co–Cr–Fe–Ni excessive entropy system. Acta Mater. 182, 278–286 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zimmermann, M., Carrard, M. & Kurz, W. Speedy solidification of Al–Cu eutectic alloy by laser remelting. Acta Metall. 37, 3305–3313 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Sharma, G., Ramanujan, R. V. & Tiwari, G. P. Instability mechanisms in lamellar microstructures. Acta Mater. 48, 875–889 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • An, Ok. et al. First in situ lattice strains measurements beneath load at VULCAN. Metall. Mater. Trans. A 42, 95–99 (2011).

    CAS 
    Article 

    Google Scholar
     

  • An, Ok., Chen, Y. & Stoica, A. D. VULCAN: a “hammer” for high-temperature supplies analysis. MRS Bull. 44, 878–885 (2019).

    ADS 
    Article 

    Google Scholar
     

  • An, Ok. VDRIVE: Knowledge Discount and Interactive Visualization Software program for Occasion Mode Neutron Diffraction ORNL Report No. ORNL-TM-2012-621 (Oak Ridge Nationwide Laboratory, 2012).

  • Larson, A. C. & Von Dreele, R. B. Normal Construction Evaluation System (GSAS) Report LAUR 86-748 (Los Alamos Nationwide Laboratory, 2004).

  • Courtney, T. H. Mechanical Conduct of Supplies (Waveland, 2005).

  • He, J. Y. et al. A precipitation-hardened high-entropy alloy with excellent tensile properties. Acta Mater. 102, 187–196 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, X., Hansen, N., Godfrey, A. & Huang, X. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar buildings in pearlitic metal wire. Acta Mater. 114, 176–183 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments